Validation of the Quality of the A Posteriori Error Estimator Based on Polynomial Preserving Recovery for Linear Elements

نویسندگان

  • Zhimin Zhang
  • Ahmed Naga
چکیده

In this paper the quality of the error estimator based on the Polynomial Preserving Recovery (PPR) is investigated using the computer-based approach described in [1, 3]. Also, a comparison is made between the performance of the error estimator based on the PPR and the one based on the Superconvergence Patch Recovery (SPR).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A Posteriori Error Estimates Based on the Polynomial Preserving Recovery

Superconvergence of order O(h), for some ρ > 0, is established for the gradient recovered with the Polynomial Preserving Recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator.

متن کامل

Polynomial Preserving Gradient Recovery and a Posteriori Estimate for Bilinear Element on Irregular Quadrilaterals

A polynomial preserving gradient recovery method is proposed and analyzed for bilinear element under quadrilateral meshes. It has been proven that the recovered gradient converges at a rate O(h) for ρ = min(α, 1), when the mesh is distorted O(h) (α > 0) from a regular one. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact.

متن کامل

Monitoring and Change Point Estimation of AR(1) Autocorrelated Polynomial Profiles

In this paper, a remedial measure is first proposed to eliminate the effect of autocorrelation in phase-ІІ monitoring of autocorrelated polynomial profiles, where there is a first order autoregressive (AR(1)) relation between the error terms in each profile. Then, a control chart based on the generalized linear test (GLT) is proposed to monitor the coefficients of polynomial profiles and an R-c...

متن کامل

Adaptive Discontinuous Galerkin Methods for Fourth Order Problems

This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003